O3	$1.5845(3)$	$0.7708(3)$	$0.6949(4)$	$0.022(2)$
O4	$1.6625(4)$	$0.5724(3)$	$0.9216(5)$	$0.024(2)$
O5	$1.3241(5)$	$0.4764(3)$	$0.9115(5)$	$0.034(2)$
O7	$0.8715(4)$	$0.8013(3)$	$0.9395(5)$	$0.027(2)$
O8	$1.0731(5)$	$0.8805(4)$	$1.1452(7)$	$0.054(4)$
OW	$0.8982(6)$	$0.8758(4)$	$0.5146(6)$	$0.049(4)$
OW	$0.4567(5)$	$0.8733(4)$	$0.3662(6)$	$0.042(3)$
C1	$1.1539(4)$	$0.7145(5)$	$0.9363(5)$	$0.023(2)$
C2	$1.2984(4)$	$0.7820(4)$	$0.8290(6)$	$0.023(2)$
C3	$1.4467(3)$	$0.7007(5)$	$0.7764(4)$	$0.018(2)$
C4	$1.5150(4)$	$0.6405(3)$	$0.9720(5)$	$0.019(2)$
C5	$1.3752(5)$	$0.5634(3)$	$1.0646(6)$	$0.022(2)$
C6	$1.2223(5)$	$0.6415(4)$	$1.1178(6)$	$0.027(3)$
C7	$1.0242(4)$	$0.8083(4)$	$1.0133(6)$	$0.027(3)$

Table 2. Geometric parameters ($\AA \AA^{\circ}$)

$\mathrm{Cu}-\mathrm{Cl}$	2.245 (1)	C5-C6	1.527 (5)
$\mathrm{Cu}-\mathrm{O3}^{\text {i }}$	2.010 (2)	C6-Cl	1.511 (5)
$\mathrm{Cu}-\mathrm{O} 7$	1.937 (3)	C1--C7	1.554 (5)
$\mathrm{Cu}-\mathrm{O} 1$	2.021 (2)	$\mathrm{Ol}-\mathrm{Cl}$	1.447 (4)
$\mathrm{Cu}-\mathrm{O4}^{\text {i }}$	2.429 (3)	O3-C3	1.445 (4)
$\mathrm{Cu}-\mathrm{OW}$	2.370 (4)	O4-C4	1.427 (4)
C1-C2	1.542 (5)	O5-C5	1.436 (4)
C2-C3	1.519 (5)	O8-C7	1.226 (6)
C3-C4	1.512 (4)	O7-C7	1.265 (4)
C4-C5	1.530 (4)		
$\mathrm{Cl}-\mathrm{Cu}-\mathrm{O} 7$	173.7 (1)	$\mathrm{O4}^{\text {i }}-\mathrm{Cu}-\mathrm{OW}$	159.1 (1)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{O3}^{\text {i }}$	164.8 (1)		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-56.7 (3)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	-174.5 (4)
C2-C3-C4-C5	61.9 (3)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	-56.5 (3)
C3-C4-C5-C6	-60.4 (3)	O3-C3-C4-C5	-179.3 (3)
C4-C5-C6-C1	54.3 (3)	O5-C5-C6-C1	-63.7 (3)
C5-C6-C1-C2	-49.7 (3)	$\mathrm{O5}-\mathrm{C5}-\mathrm{C} 4-\mathrm{O} 4$	-60.9 (3)
C6-C1-C2-C3	50.9 (3)	O5-C5-C4-C3	59.5 (3)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	73.0 (3)	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-73.7 (3)
Symmetry code: (i) $x-1, y, z$.			

As the product is air sensitive, the crystal was coated with vaseline oil and sealed in a Lindemann capillary. 12 H atoms out of the 15 present in the compound ($\mathrm{HO1}, \mathrm{HO5}, \mathrm{H} 2 \mathrm{~W}$ missing) were located from a Fourier map, introduced in fixed positions and attributed isotropic thermal factors equal to those of the bound atoms. The absolute configuration of the original product ($1 R, 3 R, 4 R, 5 R$) has been checked by refinement (R was equal to 0.045 instead of 0.063 for the opposite enantiomer) and by comparison of 88 selected Bijvoet pairs $\pm h \pm k+l$ corresponding to $\Delta F_{c}>1.5 \mathrm{e}$ using the anomalous dispersion of the Cu and Cl atoms.

> Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, bond angles, least-squares-planes data and selected Bijvoet pairs have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71411 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: PA 1060]

References

Abell, C., Allen, F. H., Bugg, T. D. H., Doyle, M. J. \& Raithby, P. R. (1988). Acta Cryst. C44, 1287-1290.

Brittain, H. G., Copeland, R. A., Ransom, M. \& Spaulding, L. (1983). J. Less-Common Met. 94, 393-400.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Katzin, L. I. (1973). Inorg. Chem. 12, 1951-1952.
Martin, R., Lilley, T. H., Bailey, N. A., Falshaw, C. P., Haslam, E., Magnolato, D. \& Besley, M. T. (1986). J. Chem. Soc. Chem. Commun. pp. 105-106.

Martin, R., Lilley, T. H., Falshaw, C. P., Haslam, E., Begley, M. J. \& Magnolato, D. (1987). Phytochemistry, 26, 273-279.

Riche, C. (1981). PHIL. Program for Data Reduction for Philips Diffractometer. Institut de Chimie des Substances Naturelles du CNRS, Gif-sur-Yvette, France.
Riche, C. (1983). R3M. Representation et manipulation de modeles moleculaires. Institut de Chimie des Substances Naturelles du CNRS, Gif-sur-Yvette, France.
Sakovich, O. G. \& Skoric, N. A. (1977). Russ. J. Inorg. Chem. 22, 51-52; (1977). Zh. Neorg. Khim. 22, 98-99.
Salazar-Garcia, F., Barba-Behrens, N., Bello-Ramirez, A., Contreras, R. \& Flores-Parra, A. (1993). In preparation.
Sheldrick, G. M. (1976) SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Siructures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 64-67

cis- $\left[\operatorname{IrCl}(\mathbf{C O})\left(\mathbf{P P h}_{3}\right)\left(\mu-\mathbf{P}_{4} \mathrm{~S}_{3}\right)\right]_{2} \cdot \mathbf{2 C H}_{3} \mathbf{C}_{6} \mathbf{H}_{5}$

Estelle Kuwabara and Robert Bau

Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
(Received 24 March 1993; accepted 23 June 1993)

Abstract

The structure of cis-bis $(\mu-2,6,7$-trithia-1,3,4,5-tetra-phosphabicyclo[2.2.1]heptanato)- $1 \kappa P^{3}, 1: 2 \kappa^{2} P^{5}$;$2 \kappa P^{3}, 1: 2 \kappa^{2} P^{5}$-bis[carbonylchloro(triphenylphosphine)iridium] toluene solvate, cis- $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{P}_{4} \mathrm{~S}_{3}\right)\right]_{2}$.$2 \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$, has been determined by single-crystal X-ray diffraction. Each $\mathrm{P}_{4} \mathrm{~S}_{3}$ ligand is bidentate, binding to the two Ir centers through oxidative addition and the cleavage of a basal $\mathrm{P}-\mathrm{P}$ bond.

Comment

Tetraphosphorus trisulfide, $\mathrm{P}_{4} \mathrm{~S}_{3}$, has exhibited interesting coordination chemistry with a variety of transitionmetal complexes and is the subject of two review articles (di Vaira, Stoppioni \& Peruzzini, 1990; di Vaira \& Stoppioni, 1992). The complex trans- $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mu\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{~S}_{3}\right)\right]_{2}$, which exhibited a single carbonyl stretching band at $2055 \mathrm{~cm}^{-1}$ in its Nujol-mull infrared spectrum, was the reported product from the equimolar reaction between Vaska's complex, $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$, and $\mathrm{P}_{4} \mathrm{~S}_{3}$ in benzene at 333 K ; its X-ray crystal structure was determined (Ghilardi, Midollini \& Orlandini, 1983).

We report here that the use of excess $\mathrm{P}_{4} \mathrm{~S}_{3}$ and a lower reaction temperature results in the isolation of the crystalline cis isomer (I). Toluene solutions of

(I)
$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{P}_{4} \mathrm{~S}_{3}$ in molar ratios in excess of $1: 2$ were reacted at room temperature under an Ar atmosphere to produce a reddish brown solution. An olive-green powder, whose Nujol-mull infrared spectrum exhibited a single carbonyl stretching band at $2046.72 \mathrm{~cm}^{-1}$, formed shortly after the complete addition of the $\mathrm{P}_{4} \mathrm{~S}_{3}$ solution. Recrystallization attempts of this powder have been unsuccessful. After the precipitate was allowed to settle overnight in a refrigerator, the orange supernatant was separated, concentrated and stored in a freezer. Emerald-green crystals, which exhibited two carbonyl stretching bands at 2051.55 and $2044.79 \mathrm{~cm}^{-1}$, formed after a few days. A crystallographic study showed that this compound is cis-$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{P}_{4} \mathrm{~S}_{3}\right)\right]_{2} .2 \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$.

The two carbonyl bands in the infrared spectrum are consistent with the presence of single carbonyl ligands on each Ir center related to each other by C_{2} symmetry. The two chloride ligands are also present in this spatial relationship. Conversely, the previously reported stereoisomer has its carbonyl ligands on each Ir center in a trans relationship to each other with C_{i} symmetry.

The symmetry differences between the cis and trans isomers are seen in the orientations of the two $\mathrm{P}_{4} \mathrm{~S}_{3}$ ligands in each dimer. The angle between the planes P2, P3, P 4 and $\mathrm{P} 2^{i}, \mathrm{P}^{\mathrm{i}}, \mathrm{P} 4^{\mathrm{i}}$ is 85.56° in the cis isomer and 0.0° in the trans isomer. In the cis isomer, the apex of each P_{3} plane, represented by atoms P 4 and $\mathrm{P} 4^{i}$, respectively, is in a cis orientation with respect to the $\mathrm{Ir}_{2} \mathrm{P}_{2}$ plane, thereby reflecting the twofold symmetry of the dimer. This contrasts with the trans orientation of the P_{3} planes found in the trans isomer due to the presence of the inversion center.

The formation of this stereoisomer at a lower temperature demonstrates that the cleavage of one of the P-P bonds in the basal triangle of $\mathrm{P}_{4} \mathrm{~S}_{3}$ is a facile process. Although excess $\mathrm{P}_{4} \mathrm{~S}_{3}$ was used, the isolation of the crystalline product involving the basal P atoms rather than the apical one also demonstrates the favorable bonding mode between $\mu-\mathrm{P}_{4} \mathrm{~S}_{3}$ and the Ir center. The cis and trans Ir dimers represent the first crystallographically characterized stereoisomeric pair of transition-metal complexes containing a $\mathrm{P}_{4} \mathrm{~S}_{3}$ ligand.

Fig. 1. ORTEP (Johnson, 1965) view of cis- $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{P}_{4} \mathrm{~S}_{3}\right)\right]_{2}$ with 25% probability ellipsoids.

Experimental

Crystal data
$\left[\mathrm{Ir}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{~S}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}-\right.$
$\left.(\mathrm{CO})_{2}\right] .2 \mathrm{C}_{7} \mathrm{H}_{8}$
$M_{r}=1660.4$
Monoclinic
C2/c
$a=14.794$ (19) \AA
$b=18.377$ (15) \AA
$c=23.413$ (35) \AA
$\beta=97.63(11)^{\circ}$
$V=6309(13) \AA^{3}$
$Z=4$
$D_{x}=1.749 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 13 reflections
$\theta=3.55-12.53^{\circ}$
$\mu=4.581 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.30 \times 0.30 \times 0.10 \mathrm{~mm}$
Emerald green

Data collection

Syntex $P 2_{1}$ diffractometer
ω scans
Absorption correction: empirical
$T_{\text {min }}=0.49, \quad T_{\text {max }}=1.25$
6313 measured reflections
4062 independent reflections 2391 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.039$
$w R=0.045$
2391 reflections
299 parameters
H -atom parameters not refined
Unit weights applied
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=22.5^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 20$
$l=-25 \rightarrow 25$
4 standard reflections monitored every 50 reflections intensity variation: none
$(\Delta / \sigma)_{\text {max }}=0.573$
$\Delta \rho_{\text {max }}=0.90 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors
from Cromer \& Mann
(1968)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	2	$U_{\text {eq }}$
Ir 1	0.11542 (4)	0.14535 (3)	0.79473 (2)	0.028 (1)
P1	0.2755 (3)	0.1620 (2)	0.7806 (2)	0.035 (4)
P2	-0.0430 (3)	0.1389 (2)	0.8062 (1)	0.033 (4)
P3	0.1227 (3)	0.1692 (2)	0.8981 (2)	0.049 (4)
P4	-0.0239 (3)	0.2139 (3)	0.8840 (2)	0.048 (4)
P5	-0.0401 (4)	0.0492 (3)	0.9334 (2)	0.076 (6)
S2	-0.0821 (3)	0.0395 (2)	0.8428 (2)	0.049 (4)
S3	0.1013 (3)	0.0705 (3)	0.9441 (2)	0.064 (5)
S4	-0.0895 (3)	0.1570 (3)	0.9445 (2)	0.071 (5)
Cl1	0.1022 (3)	0.2759 (2)	0.7948 (2)	0.046 (4)
Ol	0.1320 (9)	-0.0173 (6)	0.8105 (5)	0.067 (9)
C1	0.1270 (12)	0.0442 (8)	0.8029 (7)	0.046 (10)
C11	0.3420 (11)	0.0775 (7)	0.7913 (6)	0.040 (9)
C12	0.4188 (11)	0.0686 (10)	0.8332 (7)	0.055 (10)
C13	0.4633 (12)	0.0002 (11)	0.8408 (8)	0.063 (10)
C14	0.4295 (14)	-0.0587 (11)	0.8057 (9)	0.072 (11)
C15	0.3559 (13)	-0.0511 (11)	0.7626 (8)	0.066 (10)
C16	0.3097 (12)	0.0167 (8)	0.7558 (7)	0.052 (10)
C21	0.3423 (10)	0.2298 (7)	0.8266 (7)	0.041 (9)
C 22	0.3412 (12)	0.2261 (10)	0.8882 (8)	0.065 (10)
C23	0.3921 (14)	0.2801 (12)	0.9224 (9)	0.079 (11)
C24	0.4405 (15)	0.3340 (11)	0.8975 (10)	0.083 (11)
C25	0.4409 (16)	0.3373 (11)	0.8392 (10)	0.092 (11)
C26	0.3922 (14)	0.2843 (10)	0.8016 (8)	0.073 (10)
C31	0.2909 (9)	0.1911 (8)	0.7072 (6)	0.036 (9)
C32	0.2393 (11)	0.2538 (9)	0.6850 (7)	0.052 (10)
C33	0.2601 (14)	0.2846 (11)	0.6314 (8)	0.070 (10)
C34	0.3230 (14)	0.2533 (12)	0.6008 (8)	0.080 (11)
C35	0.3723 (15)	0.1900 (12)	0.6231 (9)	0.084 (11)
C36	0.3564 (11)	0.1631 (10)	0.6768 (7)	0.061 (10)
C2	0.1715 (17)	0.3833 (13)	0.9280 (11)	0.043 (6)
C3	0.1177 (19)	0.3890 (14)	0.9724 (11)	0.049 (6)
C4	0.1157 (17)	0.4527 (11)	1.0046 (11)	0.049 (6)
C5	0.1704 (17)	0.5110 (9)	0.9926 (9)	0.042 (6)
C6	0.2105 (15)	0.5097 (11)	0.9419 (8)	0.033 (5)
C7	0.2109 (17)	0.4463 (10)	0.9091 (10)	0.038 (5)
C8	0.1733 (20)	0.5790 (11)	1.0281 (10)	0.053 (6)

Table 2. Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ir 1-P1
Ir1-P2
Irl-P2 ${ }^{\text {i }}$
Ir1-P3
Ir $1-\mathrm{Cl} 1$
Irl-C1
$\mathrm{Ol}-\mathrm{Cl}$
P2-P4
P3-P4
S2-P2
S3-P3
S4-P4
S2-P5
S3-P5
S4-P5
P1-C11
C11-C12
C12-C13
C13-C14
C14-C15
C15-C16
C11-C16
Ir $1 \cdots$ Ir 1^{\prime}
$\mathrm{Cl1} \ldots \mathrm{Cl} 1^{\text {i }}$
P2 . . P3
$\mathrm{P} 2 \ldots \mathrm{P} 2^{\text {i }}$
P2-Ir1-P1
P3--Ir1-P1
P2 ${ }^{\text {- }}$ - $\mathrm{Irl} 1-\mathrm{Pl}$
P2-Ir1-P2 ${ }^{\text {i }}$
P3

$2.453(4)$
$2.397(4)$
$2.464(3)$
$2.449(4)$
$2.407(4)$
$1.874(15)$
$1.144(16)$
$2.271(6)$
$2.302(7)$
$2.130(5)$
$2.155(6)$
$2.099(6)$
$2.138(6)$
$2.109(7)$
$2.140(9)$
$1.837(14)$
$1.41(2)$
$1.42(2)$
$1.41(3)$
$1.39(3)$
$1.42(2)$
$1.44(2)$
$3.762(1)$
$3.444(9)$
$3.091(6)$
$3.070(7)$
$175.5(1)$
$101.2(1)$
$100.4(1)$
$78.3(1)$
$79.3(1)$

P1-C21	1.847 (14)
C21-C22	1.45 (2)
C22-C23	1.43 (3)
C23-C24	1.39 (3)
C24-C25	1.37 (3)
C25-C26	1.44 (3)
C21-C26	1.42 (2)
P1-C31	1.842 (14)
C31-C32	1.44 (2)
C32-C33	1.45 (2)
C33-C34	1.37 (3)
C34-C35	1.43 (3)
C35-C36	1.40 (2)
C31-C36	1.38 (2)
C2-C3	1.40 (4)
C3-C4	1.40 (3)
C4-C5	1.40 (3)
C5-C6	1.40 (3)
C6-C7	1.40 (3)
C2-C7	1.40 (3)
C5-C8	1.50 (3)
S2...S3	3.406 (6)
S2...S4	3.228 (7)
S3 . . S4	3.241 (7)
S4-P5-S3	99.4 (3)
P5-S2-P2	105.6 (3)
P5-S3-P3	107.9 (3)
P5-S4-P4	100.5 (3)
P1-C11-C12	124 (1)

A suitable crystal was dipped in Paratone-N while in an Ar stream and sealed in a Lindemann capillary for the crystallographic study. The systematic absences indicated the probable space groups to be $C c$ or $C 2 / c$. Patterson maps, computed using SHELXS86 (Sheldrick, 1986), revealed possible Ir positions. Attempts to obtain a meaningful structural model in space group Cc failed since no complete ligand could be located. The successful solution and refinement of the crystal structure confirmed the choice of the centrosymmetric space group C2/c. Subsequent difference Fourier maps, computed using SHELX76 (Sheldrick, 1976), clearly revealed the ligands bound to the Ir center and the presence of a toluene solvent molecule. All full-matrix leastsquares refinement cycles were performed using SHELX76. As a result of disorder, the $\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}$ and $\mathrm{C}_{\text {methy1 }}-\mathrm{C}_{\text {ring }}$ bond distances were fixed at 1.395 and $1.499 \AA$, respectively. The toluene atoms, $\mathrm{C} 2-\mathrm{C} 8$, were refined isotropically. The non- H atoms of the Ir complex were refined anisotropically. H atoms were not included in the structural model. Geometrical calculations were performed using SHELX76, XANADU (Roberts \& Sheldrick, 1975) and PLANE (Brändén \& Lundgren, 1978). Data collection: $P 2_{1}$ Assembler Language Data Collection Programs (Syntex, 1975). Data reduction: locally written program (Tipton, 1977). Molecular graphics: ORTEP (Johnson, 1965).

[^0]Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Ghilardi, C. A., Midollini, S. \& Orlandini, A. (1983). Angew. Chem. Int. Ed. Engl. 22, 790-791.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for Crystallographic Calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Syntex (1975). P2 Assembler Language Data Collection Programs. Syntex Analytical Instruments, Cupertino, California, USA.
Tipton, D. L. (1977). Processing routine for the Syntex $P 2_{1}$ diffractometer. Univ. of Southern California, California, USA.
Vaira, M. di \& Stoppioni, P. (1992). Coord. Chem. Rev. 120, 259-279.
Vaira, M. di, Stoppioni, P. \& Peruzzini, M. (1990). Comments Inorg. Chem. 11, 1-19.

Acta Cryst. (1994). C50, 67-69

Copper Complex of 6,7-Dihydro-5H-1,4-dithiepine-2,3-dithiolate

Tian-Ming Yao, Xiao-Zeng You,* Cun Li and Lin-Feng Li
Coordination Chemistry Institute, Nanjing University, Nanjing 210008, People's Republic of China

Qing-Chuan Yang
Chemistry Department, Beijing University, Beijing 100871, People's Republic of China
(Received 5 February 1993: accepted 22 June 1993)

Abstract

A short $\mathrm{C}-\mathrm{S}$ bond distance and a planar ligand structure indicate extensive delocalization of electron density in the anion of tetrabutylammonium bis($6,7-$ dihydro-5 H -1,4-dithiepine-2,3-dithiolato)copper(III), $\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~S}_{4}\right)_{2}\right]$. The central metal ion, formally $\mathrm{Cu}^{\text {II }}$, has an unusual oxidation state. The crystal has a layer-like structure formed by the anions, while the tetrabutylammonium cations intercalate between them.

Comment

Multi-sulfur 1,2-dithiolene complexes have attracted much attention from chemists because of their structural similarity to BEDT-TTF salts, which are molecular organic superconductors (Williams, Ferraro, Thorn, Carlson, Geiser, Wang, Kini \& Whangbo, 1992). Some of these complexes, such as
$\left[M(\mathrm{dddt})_{2}\right]^{n-}$ (Schultz, Wang, Soderholm, Shifter \& Williams, 1987) and $\left[M\left(\text { dmit }_{2}\right]^{n-}\right.$ (Fan, $\mathrm{Li}, \mathrm{Ou} \&$ You, 1992), have been studied extensively. The title complex (1) is an analogue of $\mathrm{Bu}_{4} \mathrm{~N}\left[M(\mathrm{dddt})_{2}\right]$ but differs in the external ligand unit. An X-ray analysis was undertaken to investigate the importance of the ligand unit in determining molecular structure and crystal packing.

(1)

The dithiolate ligand of complex (1) was prepared as a dipotassium salt following a method described by Kato, Kobayashi \& Sasaki (1986), but using nitrogen instead of argon. The salt (1.2 g) was dissolved in methanol and 0.21 g of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in methanol was added dropwise. Stirring was continued for 1 h . Air was bubbled through the reaction mixture for 15 min . After filtration, 1.5 g of tetrabutylammonium bromide was added to the brown filtrate. The dark-brown precipitate was collected by filtration, washed with methanol and dried in air. The powder product was recrystallized in acetone by slow evaporation. Single crystals were obtained in 2 weeks. Analysis for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{CuNS}_{8}$: calculated C 44.95, H 6.96, N 2.02%; found C 44.31, H 6.70, N 1.70\%.

The four S atoms surround the Cu atom to yield a square-planar environment. The CuS_{4} core is distorted from $D_{2 h}$ symmetry by a twist angle of $6.10(1)^{\circ}$ in contrast with that of 29° in $\mathrm{Bu}_{4} \mathrm{~N}\left[\mathrm{Cu}(\mathrm{dddt})_{2}\right]$. The ligand, with the exception of the external propene unit, is almost planar. The maximum displacement from the least-squares plane defined by $S(1)-C(2)-S(3)$ is 0.076 (8) \AA. It is apparent that this complex has better planarity than $\mathrm{Bu}_{4} \mathrm{~N}\left[\mathrm{Cu}(\mathrm{dddt})_{2}\right]$ (Vance, Welch \& Bereman, 1989). The average $M-\mathrm{S}(2.181 \AA)$ and $\mathrm{C}=\mathrm{C}(1.342 \AA)$ bond distances are close to the corresponding values in $\mathrm{Bu}_{4} \mathrm{~N}\left[\mathrm{Cu}(\mathrm{dddt})_{2}\right]$. The $\mathrm{C}-\mathrm{S}$ bond distances in the dithiolene group vary from 1.743 (6) to 1.768 (6) \AA and are intermediate between those of $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}-\mathrm{S}$. The shorter $\mathrm{C}-\mathrm{S}$ bond length shows partial double-bond character. The $\mathrm{C}-\mathrm{S}$ distances in the five-membered ring formed through coordination with the Cu atom are shorter than those in the periphery of the ligand. This may indicate slight electron delocalization in the coordination ring. The electron delocalization makes it difficult to assign an oxidation state to the central metal ion.

The external seven-membered rings adopt a chair conformation and the two propene groups have a trans orientation.

[^0]: Lists of structure factors, anisotropic thermal parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71424 (7 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: ST1074]

 ## References

 Brändèn, C. I. \& Lundgren, J. O. (1978). PLANE. Program for Crystallographic Least-Squares Planes and Dihedral Angles Calculations. Univ. of Uppsala, Sweden.

